Effect of Aluminum Ion on Fe²⁺-Induced Lipid Peroxidation in Phospholipid Liposomes under Acidic Conditions¹

Takao Ohyashiki,*.2 Tomokazu Karino,* Satomi Suzuki,* and Katsuhiko Matsui[†]

*Department of Clinical Chemistry and †Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa, Ishikawa 920-11

Received for publication, April 22, 1996

The effects of Al³⁺ on Fe²⁺-induced lipid peroxidation in phospholipid liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) were examined under acidic conditions. The stimulatory effect of Al^{3+} on Fe^{2+} -induced lipid peroxidation in the liposomes showed a biphasic response against pH variation, and the maximum stimulation was observed around pH 6.0. In addition, it was found that the stimulatory effect of Al³⁺ on the lipid peroxidation was dependent on the proportion of PS in the liposomes. On the other hand, the lipid peroxidation in PC liposomes was not stimulated by the addition of Al^{3+} . From these findings, it is suggested that the Al^{3+} effect on Fe^{2+} -induced lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition. Trivalent cations such as Tb^{3+} and Ga^{3+} also stimulated Fe^{2+} -induced lipid peroxidation in PC/PS liposomes under acidic conditions, but divalent cations $(Zn^{2+} and Mn^{2+})$ showed no stimulatory effect. The extents of Fe^{2+} disappearance and Fe^{3+} formation during the reaction were enhanced by the addition of Al^{3+} or Ga^{2+} , but Tb^{3+} had no effect on Fe^{2+} disappearance. The results with 1,6-diphenyl-1,3,5-hexatriene (DPH) showed that the fluorescence anisotropy of DPH-labeled PC/PS liposomes under acidic conditions was increased by the addition of Al^{3+} . Furthermore, there is a relation between the extents of the fluorescence anisotropy of the complex and TBARS production. In contrast, the fluorescence anisotropy of DPH molecules embedded in PC liposomes was not changed by the addition of Al³⁺. Based on these results, a possible mechanism of the stimulatory effect of Al³⁺ on Fe²⁺-induced lipid peroxidation under acidic conditions is discussed.

Key words: acidosis, Al³⁺ effect, lipid peroxidation, phospholipid liposome.

It has been reported that elevated levels of aluminum in the brain may be related to several neurological disorders such as Alzheimer's disease and Parkinsonian dementia (1-4). In addition, it has been suggested that neurological disorders are accompanied by an increased rate of lipid peroxidation in the brain, resulting in accumulation of large amounts of "age pigments" such as lipofuscin and ceroid (5). There is evidence that production of thiobarbituric acid-reactive substances (TBARS) in rat (6) and mouse (7) brains is accelerated by the administration of aluminum salts.

It has recently been reported that aluminum ion stimulates lipid peroxidation in phospholipid liposomes (8-10)and membranes such as rat liver microsomes (11), human erythrocytes (8), and mouse brain membranes (12). These findings suggest that the stimulatory effect of Al³⁺ on lipid peroxidation plays an important role in various neurological disorders associated with increased levels of aluminum ion. On the other hand, Halliwell and Gutteridge have also reported (13) that the end-products of lipid peroxidation may produce secondary damage in a number of neurological disorders.

It has been widely accepted (14-16), that extracellular and intracellular acidosis leads to ischemic brain damage. In addition, Siesjo *et al.* have reported (17) that the intracellular acidosis results in an enhancement of lipid peroxidation in brain tissue. In the previous paper, we also reported (9) that Fe²⁺-induced lipid peroxidation in PC liposomes is markedly stimulated by lowering the pH of the reaction mixture. These findings suggest that acidification of the cellular fluid plays an important role in the enhancement in Fe²⁺-induced lipid peroxidation of cellular membranes *in vivo*.

To investigate this possibility, we examined the effects of Al^{3+} on Fe^{2+} -induced lipid peroxidation in phospholipid liposomes under acidic conditions and chose pH 5.0 as a model pH of acidosis, because aluminum ions form numerous types of the hydrated aluminum complexes above pH 5.0 (18).

The results suggested that a marked stimulatory effect of Al³⁺ on the lipid peroxidation under acidic conditions is related to phospholipid composition and the physical

¹ This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and from the Specific Research Fund of Hokuriku University. ² To whom correspondence should be addressed.

Abbreviations: PC, phosphatidylcholine; PS, phosphatidylserine; DPH, 1,6-diphenyl-1,3,5-hexatriene; TBARS, thiobarbituric acidreactive substances; BHA, 3(2)-*tert*-butyl-4-hydroxyanisole; TES, N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate; MES, 2-(Nmorpholino)ethanesulfonic acid monohydrate; BPT, basophenanthroline disulfonic acid disodium salt.

properties of the membrane lipids.

MATERIALS AND METHODS

Materials—Phosphatidylcholine (egg yolk, PC) and phosphatidylserine (bovine brain, PS) were purchased from Sigma (St. Louis, MO). 2-Thiobarbituric acid, 3(2)-tertbutyl-4-hydroxyanisole (BHA), N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES), 2-(N-morpholino)ethanesulfonic acid monohydrate (MES), 1,6-diphenyl-1,3,5hexatriene (DPH), and basophenanthroline disulfonic acid disodium salt (BPT) were obtained from Wako Pure Chemical (Osaka). The amounts of lipid hydroperoxides present in phospholipids were measured by iodometric method (19), and estimated to be 0.90 and 0.013 nmol/mg phospholipid (as cumene hydroperoxide) for PC and PS, respectively. Other chemicals used were of the purest grade commercially obtainable.

Preparation of Phospholipid Liposomes—Chloroform solutions of PC (30 mg/ml) and PS (5 mg/ml) were mixed, unless otherwise specified, and then evaporated to dryness with a stream of nitrogen gas. The residual solvent was completely removed under vacuum, the appropriate amount of 10 mM Tris-HCl buffer (pH 7.4) was added, and the mixture was sonicated with an Ultra Sonic Disrupter UR-200 P (Tomy Seiko, Tokyo) until the dispersion became clear. This clear solution was then centrifuged at $25,000 \times g$ for 20 min, and the supernatant was used in the present study. PC liposomes were prepared similarly, but without PS.

Lipid Peroxidation—The liposomal suspension (0.1 mg/ml) was incubated with 0.1 mM FeSO₄ in 50 mM acetate buffer (pH 5.0) or 50 mM TES/NaOH buffer (pH 7.4) for 30 min at 37°C in the presence and absence of AlCl₃, unless otherwise specified. The reaction was terminated by the addition of 5 mM BHA (as a final concentration). TBARS production was measured by the procedure reported previously (20), and represented as the absorbance at 530 nm. On the other hand, the amount of conjugated diene was calculated using the molar extinction coefficient of 25,200 at 233 nm (19).

Labeling of the Liposomes with DPH—The PC/PS or PC liposomes (1 mg/ml) were incubated with $1 \mu M$ DPH (dissolved in tetrahydrofuran) in 10 mM Tris-HCl buffer (pH 7.4) for 5 min at 37°C. The final concentration of tetrahydrofuran in the reaction mixture was 0.33%.

Fluorescence Measurements—The fluorescence measurements were performed by using a Hitachi 850 spectrofluorometer equipped with a rhodamine B quantum counter at 25°C. The excitation and emission wavelengths used for the DPH fluorescence measurement were 340 and 430 nm, respectively. To prevent error due to light scattering of the sample emission, a 390-nm cut off filter was used. The steady-state fluorescence polarization was expressed as the fluorescence anisotropy, γ , using the following equation: $\gamma = (I_V - I_H)/(I_V + 2I_H)$, where I_V and I_H represent the fluorescence intensities of the vertically and horizontally polarized light of the emission with vertically polarized excitation, respectively.

Measurement of Turbidity—The turbidity of the liposomal suspension was measured by monitoring the absorbance at 450 nm after the addition of $AlCl_3$ to the suspension (0.1 mg/ml liposomes in 50 mM acetate buffer, pH 5.0) as described in our previous paper (9).

Assay of Ferrous Ion Oxidation-The concentration of Fe^{2+} was colorimetrically measured by the use of BPT (21). The reaction was started by the addition of 0.1 mM FeSO₄ (as a final concentration) to the reaction mixture containing 0.1 mg/ml liposomes and 50 mM acetate buffer (pH 5.0) in the presence and absence of 0.5 mM AlCl₃ at 37°C. The total volume of the reaction mixture was 1 ml. The reaction was periodically terminated by the addition of 0.025% BPT containing 1.5 M sodium acetate (1.5 ml). Then 0.5 ml of 1 N HCl was added and the mixture was left for 10 min at room temperature. The amount of BPT-ferrous complex was calculated using the molar extinction coefficient of 22,350 at 535 nm. On the other hand, Fe³⁺ formation was determined by recording the increase in the absorbance at 310 nm (22) after the addition of 0.1 mM FeSO4 to the liposomal suspension (0.1 mg/ml) with and without 0.5 mM AlCl₃ in 50 mM acetate buffer (pH 5.0).

RESULTS

Effects of pH Variation—The effects of $AlCl_3$ on Fe^{2+} induced lipid peroxidation in PC/PS liposomes were examined in the pH range of 5.0-7.4.

As shown in Fig. 1, the stimulatory effect of Al^{3+} on Fe^{2+} induced TBARS production in the liposomes showed a biphasic response to the pH variation. The maximum stimulation was observed at pH 6.0. In the absence of Fe^{2+} , $AlCl_3$ itself did not induce TBARS production in the pH range tested (data not shown). On the other hand, an appreciable stimulation of Fe^{2+} -induced TBARS production in PC liposomes by Al^{3+} was not observed below pH 6.0. $(A_{530}=0.374\pm0.012$ and 0.400 ± 0.012 for the systems without and with 0.5 mM AlCl₃ at pH 5.0, respectively).

The difference in the Al^{3+} effect on the lipid peroxidation between PC/PS and PC liposomes under acidic conditions was also confirmed in terms of conjugated diene formation (Fig. 2).

The effects of the content of PS in PC/PS liposomes upon

Fig. 1. pH dependence of stimulatory effect of AlCl₃ on Fe²⁺induced lipid peroxidation in PC/PS liposomes. The liposomes (0.1 mM) were incubated with 0.1 mM FeSO₄ in the presence and absence of 0.5 mM AlCl₃ in 50 mM acetate buffer (pH 5.0), 50 mM MES/NaOH buffer (pH 5.5-7.0) or 50 mM TES/NaOH buffer (pH 7.4) for 30 min at 37°C. Values are expressed as relative to those in the absence of Fe²⁺ at each pH, and represented as means±SD of three independent determinations.

the stimulatory effect of Al^{3+} on Fe^{2+} -induced lipid peroxidation at pH 5.0 are presented in Fig. 3.

As shown in the figure, the Al^{3+} effect increased with increasing proportion of PS in PC liposomes. On the other hand, the extent of Fe²⁺-induced TBARS production in PC liposomes in the absence of Al^{3+} was not stimulated by increasing concentrations of PS (data not shown), indicating that enhancement of the Al^{3+} effect associated with increasing concentrations of PS is not due to the increase of the available substrate for peroxidation, and that the stimulatory effect of Al^{3+} on the lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition.

Figure 4 shows the concentration dependence of $AlCl_3$ on Fe^{2+} -induced lipid peroxidation in PC/PS liposomes at pH 5.0. As can be seen in the figure, stimulation of Fe^{2+} -induced TBARS production by Al^{3+} was dependent on the concentration of $AlCl_3$, and the concentration of $AlCl_3$ required to induce the half-maximum effect was estimated

Fig. 2. Effect of AlCl, on conjugated diene formation in PC/PS and PC liposomes at pH 5.0. The liposomes were incubated with 0.1 mM FeSO₄ for 30 min at 37°C in the presence and absence of 0.5 mM AlCl₃. A and B represent PC/PS and PC liposomes, respectively. Symbols: \Box , in the absence of AlCl₃; \blacksquare , in the presence of AlCl₃. Values are expressed as means of three independent determinations.

Fig. 3. Effect of AlCl, on TBARS formation in PC liposomes with variable proportions of PS at pH 5.0. The concentration of AlCl, was 0.5 mM. Values are expressed relative to that without Al³⁺ in each system, and expressed as means \pm SD of six independent determinations.

to be approximately $80 \mu M$.

Effect of Other Metal Ions on TBARS Production—In order to investigate Al^{3+} specificity for the stimulation of Fe^{2+} -induced lipid peroxidation in PC/PS liposomes under acidic conditions, other metal ions such as Tb^{3+} , Ga^{3+} , Zn^{2+} , and Mn^{2+} were used in place of Al^{3+} .

As shown in Table I, TBARS production in PC/PS liposomes was also markedly stimulated by the addition of

Fig. 4. The AlCl, concentration dependence of Fe^{2+} -induced lipid peroxidation in PC/PS liposomes at pH 5.0. The AlCl, concentration was varied from 0.01 to 0.5 mM. Values are expressed as mean \pm SD of six independent determinations.

TABLE I. Effects of divalent and trivalent cations on Fe^{2+} induced TBARS production in PC/PS liposomes at pH 5.0. The concentrations of divalent and trivalent cations were 0.5 mM, except for Fe^{2+} . Values are expressed as means \pm SD of three independent determinations.

System	A \$300
Fe ²⁺ alone	0.059 ± 0.003
Fe ²⁺ /Zn ²⁺	0.067 ± 0.007
Fe ²⁺ /Mn ²⁺	0.013 ± 0.003
Fe ³⁺ /Tb ³⁺	0.327 ± 0.027
Fe ²⁺ /Ga ³⁺	0.283 ± 0.004

Fig. 5. Time course of TBARS production in PC/PS liposomes at pH 5.0. The concentrations of trivalent cations were 0.5 mM. Symbols: \bigcirc , control (Fe²⁺ alone); \bullet , AlCl₂; \triangle , GaCl₂. Values are expressed as mean of three independent determinations.

Fig. 7. The AlCl₃ concentration dependence on the fluorescence anisotropy of DPH-labeled liposomes at 25°C. The concentrations of DPH-labeled PC/PS and PC liposomes were 0.1 mg/ml. The concentration of AlCl₃ was varied from 0.01 to 0.5 mM. Symbols: \bigcirc , PC/PS liposomes; \bullet , PC liposomes. Values are expressed as means \pm SD of three independent determinations.

 $TbCl_3$ or $GaCl_3$. On the other hand, divalent cations showed no stimulatory effect on Fe^{2+} -induced TBARS production. The addition of $MnCl_2$ to the system rather effectively suppressed Fe^{2+} -induced TBARS production.

Next, the time courses of Fe^{2+} -induced TBARS production in PC/PS liposomes in the absence and presence of AlCl₃ or GaCl₃ were examined.

As can be seen in Fig. 5, TBARS production in PC/PS liposomes in the absence of these trivalent cations was initiated after a lag period of about 30 min. On the other hand, the addition of AlCl₃ or GaCl₃ to the reaction mixture virtually abolished the lag period and a constant level was reached after 30 min of incubation. In addition, it was found that the TBARS values in the systems with Al³⁺ and Ga³⁺ after 10-min incubation were almost the same.

Ferrous Ion Oxidation under Acidic Conditions—Figure 6 (A and B) shows Fe^{2+} disappearance and Fe^{3+} formation in PC/PS liposomes at pH 5.0 in the presence and absence of trivalent cations.

As can be seen in the figure, the addition of AlCl₃ or GaCl₃ to the liposomes resulted in a marked acceleration of Fe²⁺ disappearance and Fe³⁺ formation, suggesting that these trivalent cations stimulate Fe²⁺ oxidation. In contrast, Tb³⁺

Fig. 6. Time courses of ferrous iron oxidation in PC/PS liposomes at pH 5.0. After the addition of 0.1 mM FeSO, to the liposomal suspensions, Fe^{2+} disappearance (A) and Fe^{3+} formation (B) were measured. The concentrations of trivalent cations were 0.5 mM. Symbols: O, control (no Me^{3+}); \bullet , plus Al³⁺; \triangle , plus Ga²⁺; \blacktriangle , plus Tb³⁺. Values are expressed as means of three independent determinations.

Fig. 8. Relationship between the TBARS values and the fluorescence anisotropy of DPH-labeled PC/PS liposomes. The data of TBARS production and the fluorescence anisotropy were obtained from Figs. 4 and 7, respectively.

had no effect on Fe²⁺ disappearance.

Change in Lipid Fluidity—The effects of Al^{3+} on the lipid organization in PC/PS and PC liposomes at pH 5.0 were examined by measuring the fluorescence anisotropy of DPH-labeled liposomes.

As can be seen in Fig. 7, the fluorescence anisotropy of DPH-labeled PC/PS liposomes increased depending on the AlCl₃ concentration, and the concentration of AlCl₃ required to induce half-maximal change in the anisotropy of the complex was estimated to be approximately $80 \ \mu$ M. Furthermore, it was found that there is a relationship between the extents of the fluorescence anisotropy of DPH-labeled PC/PS liposomes and the TBARS value under the same conditions (Fig. 8). On the other hand, the fluorescence anisotropy of DPH-labeled PC liposomes at pH 5.0 did not change in the concentration range of AlCl₃ tested.

Under these conditions, the turbidity of the PC/PS liposomal suspension ($A_{450} = 0.020$) did not change upon the addition of AlCl₃ in the concentration range tested (data not shown), indicating that the increased fluorescence anisotropy of PC/PS liposomes induced by the addition of AlCl₃ is not due to the formation of liposomal aggregates (9).

DISCUSSION

The present study suggests that the stimulatory effect of Al^{3+} on Fe^{2+} -induced lipid peroxidation under acidic conditions is dependent on the lipid composition and lipid organization.

As shown in Fig. 1, the pH profile of the stimulatory effect of Al³⁺ on Fe²⁺-induced lipid peroxidation showed a biphasic response with a maximum effect at around pH 6.0. This finding is different from that reported by Oteiza (10), who found that the stimulatory effect of Al³⁺ on Fe²⁺-induced lipid peroxidation in phospholipid liposomes decreased with increase of pH of the reaction mixture. The reason for the discrepancy is unclear at present. As is well known, Al³⁺ is readily hydrated above pH 5.0 and forms numerous types of hydrated products. Turner has reported (18) that aluminum mainly exist as the free ion (Al^{3+}) with a small amount (about 1%) of aluminum hydrated dimer. $Al_2(OH)_2^{4+}$ at pH 4.65. From this finding, it is suggested that the proportion of the hydrated products of Al^{3+} is closely related to the effect of Al³⁺ under acidic conditions. In the present study, we chose pH 5.0 as the experimental condition to examine the effects of interaction of Al³⁺ ions with the liposomal membranes on Fe²⁺-induced lipid peroxidation, in order to avoid such complexity in the interpretation of the results.

As shown in Fig. 4, Fe^{2+} -induced lipid peroxidation in PC/PS liposomes at pH 5.0 was stimulated by Al³⁺ in a dose-dependent manner, although the lipid peroxidation in PC liposomes under the same conditions was almost unaffected by the addition of AlCl₃. This result suggests that the Al³⁺ effect on Fe²⁺-induced lipid peroxidation under acidic conditions is dependent on the surface charge density of the liposomal membranes. In fact, an increase in the proportion of PS molecules in PC liposomes resulted in an enhancement of the Al^{3+} effect (Fig. 3). It has been reported (18, 23) that the concentration of free Al^{3+} is increased by lowering of the pH. Therefore, it seems that an increased Al³⁺ effect observed in PC/PS liposomes at pH 5.0 may be due to a facilitated interaction of Al^{3+} with the liposomal membranes, because Al³⁺ has a great affinity for PS (24). In a preliminary experiment, we found that the amount of Al³⁺ bound to the PC/PS liposomes at pH 5.0 was 75.0 ± 3.2 nmol/mg liposomes after incubation of the liposomes with 0.5 mM AlCl₃ for 4 h at room temperature, and that the amount of bound Al³⁺ decreased with increasing concentrations of KCl in the reaction mixture (64.5 ± 0.7) and 55.6 ± 4.5 nmol/mg liposomes for the systems with 10 and 50 mM KCl, respectively). On the other hand, the amount of Al³⁺ bound to PC liposomes was very small under the same conditions (0.4 nmol/mg liposomes). From these results, it seems that binding of Al³⁺ on the liposomal surface is an important factor for the Al³⁺ effect.

It is of interest that Ga^{3+} and Tb^{3+} also showed a stimulatory effect on Fe^{2+} -induced TBARS production in PC/PS liposomes, like Al^{3+} (Table I). Furthermore, the addition of Ga^{3+} to PC/PS liposomes at pH 5.0 resulted in disappearance of the lag period in TBARS production (Fig. 5) and enhancement of Fe^{2+} disappearance and Fe^{3+} formation (Fig. 6, A and B). From these results, it is suggested that the stimulatory effect of Al^{3+} on Fe^{2+} -induced lipid peroxidation under acidic conditions may be directly re-

lated to Fe²⁺ oxidation and that Ga³⁺ is able to replace Al³⁺ as a stimulator of the lipid peroxidation of liposomes in the presence of Fe²⁺. As is known, Ga³⁺ belongs to the IIIa group of chemical elements, like Al³⁺, and has a similar ionic radius (0.62 Å) and charge density to those of Al³⁺ (0.51 Å) (25). The similarity of chemical properties between Al³⁺ and Ga³⁺ strongly suggests that these cations would have similar binding capacities for ligands, e.g., phosphate and carboxy groups. On the other hand, Tb³⁺ had no significant effect on Fe^{2+} disappearance (Fig. 6A), despite stimulation of TBARS production (Table I), suggesting that mechanism of the stimulation of lipid peroxidation associated with Tb³⁺ is different from that with Al³⁺ or Ga^{3+} . In addition, these results suggest that an $Fe^{2+}O_2$ -Fe³⁺ complex is not necessary as a specific initiator in lipid peroxidation induced by Fe²⁺, although Minotti and Aust have reported (26) that an $Fe^{2+}O_2$ - Fe^{3+} complex or a 1:1 ratio of Fe²⁺ to Fe³⁺ plays an important role in the initiation of Fe²⁺-induced lipid peroxidation. Our interpretation is consistent with the conclusion of Aruoma et al. (27) that $Fe^{2+}O_2$ - Fe^{3+} complex formation is not be required in the initiation process of Fe²⁺-induced lipid peroxidation.

The fluorescence anisotropy of DPH-labeled PC/PS liposomes at pH 5.0 increased with increasing concentrations of AlCl₃ (Fig. 7). In contrast, the addition of AlCl₃ to PC liposomes under the same conditions did not induce an appreciable stimulation of Fe²⁺-induced TBARS production or change in the fluorescence anisotropy of the dye molecules embedded in the liposomes. These results suggest that changes in the lipid dynamics in the liposomal membranes play an important role in the occurrence of the stimulatory effect of Al³⁺ on Fe²⁺-induced lipid peroxidation in PC/PS liposomes under acidic conditions. In fact, it was found that there is a relationship between the extents of the fluorescence anisotropy and TBARS production of the liposomes in the presence of various concentrations of AlCl₃ (Fig. 8). In addition, it seems that the agreement of the AlCl₃ concentrations required to induce half-maximal production of TBARS and changes in the fluorescence anisotropy of DPH-labeled PC/PS liposomes (approximately 80 μ M; Figs. 4 and 7) also supports this interpretation. Recently, McLean and Hagaman have reported (28) that an increase of the membrane fluidity decreases lipid peroxidation rates. Based on these results, we speculate that changes in the lipid organization induced by interaction of negatively charged liposomal constituents with Al³⁺ may be a mechanism for the stimulating effect of Al^{3+} under acidic conditions, and that an increased packing of acyl chains in the lipid layer may facilitate the initiation and/or propagation of the radical-mediated chain reactions in lipid peroxidation.

It is of interest that the $AlCl_3$ concentrations described above are close to those reported for inhibition of choline transport in erythrocytes and brain synaptosomes (29, 30). Although the concentration of Al^{3+} used in the present study may be much higher than that detected in patients suffering from Al^{3+} poisoning, this agreement of the Al^{3+} concentrations also suggested that changes in the ordering in the fatty acid chains in membrane lipids are closely related to the development of Al^{3+} toxicity *in vivo*. In addition, the present study raises the possibility that Al^{3+} toxicity may be enhanced under acidic conditions, *i.e.* acidosis. Further studies including *in vivo* experiments will be necessary to clarify the relationship between acidosis and lipid peroxidation in the context of Al^{3+} toxicity.

REFERENCES

- 1. Crapper, D.R., Krishman, S.S., and Dalton, A.J. (1973) Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. *Science* 180, 511-513
- Selkoe, D.J., Liem, R.K., Yen, S.-H., and Shelanski, M.L. (1979) Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degradation induced by aluminum. *Brain Res.* 163, 235-252
- 3. Perl, D.P. and Brody, A.R. (1980) Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. *Science* 208, 297-299
- Perl, D.P., Gajdusek, D.C., Garruto, R.M., Yanagihara, R.T., and Gibbs, C.J. (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 217, 1053-1055
- 5. Parkinson, I.S., Ward, M.K., and Kerr, D.N. (1981) Dialysis encephalopathy, bone disease and anaemia: The aluminum intoxication syndrome during regular haemodialysis. J. Clin. Pathol. 34, 1285-1294
- Ohtawa, M., Seko, M., and Takeyama, F. (1983) Effect of aluminum ingestion on lipid peroxidation in rats. Chem. Pharm. Bull. 31, 1415-1418
- Fraga, C.G., Oteiza, P.I., Golub, M.S., Gershwin, M.E., and Keen, C. (1990) Effects of aluminum on brain lipid peroxidation. *Toxicol. Lett.* 51, 213-219
- Gutteridge, J.M.C., Quinlan, G.J., Clark, I., and Halliwell, B. (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts. *Biochim. Biophys. Acta* 835, 441-447
- Ohyashiki, T., Karino, T., and Matsui, K. (1993) Stimulation of Fe²⁺-induced lipid peroxidation in phosphatidylcholine liposomes by aluminium ions at physiological pH. *Biochim. Biophys. Acta* 1170, 182-188
- Oteiza, P.I. (1994) A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Arch. Biochem. Biophys. 308, 374-379
- Quinlan, G.J., Halliwell, B., Moorehouse, C.P., and Gutteridge, J.M.C. (1988) Action of lead (II) and aluminium (III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. *Biochim. Biophys. Acta* 962, 196-200
- Oteiza, P.I., Fraga, C.G., and Keen, C.L. (1993) Aluminum has both oxidant and antioxidant effects in mouse brain membranes. *Arch. Biochem. Biophys.* 300, 517-521
- 13. Halliwell, B. and Gutteridge, J.M.C. (1985) Oxygen radicals and the nervous system. *Trends. Neurosci.* 8, 22-26
- Pulsinelli, W.A., Waldman, S., Rawlinson, D., and Plum, F. (1982) Moderate hyperglycemia augments ischemic brain dam-

age: A neuropathologic study in the rat. Neurology 32, 1239-1246

- Smith, M.L., von Hanwehr, R., and Siesjo, B.K. (1986) Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J. Cereb. Blood Flow Metab. 6, 574-583
- Siesjo, B.K. (1988) Acidosis and ischemic brain damage. Neurochem. Pathol. 9, 31-88
- Siesjo, B.K., Bendek, G., Koide, T., Westerberg, E., and Wieloch, T. (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro. J. Cereb. Blood Flow Metab. 5, 253-258
- Turner, R.C. (1975) Equilibrium constant for the formation of bis (hydroxyaluminum)(4+) in aqueous solutions. Can. J. Chem. 53, 2811-2817
- Buege, J.A. and Aust, S.D. (1978) Microsomal lipid peroxidation in *Methods in Enzymology* (Fleisher, S. and Packer, L., eds.) Vol. 52, pp. 302-310, Academic Press, New York
- Ohyashiki, T., Sakata, N., Mohri, T., and Matsui, K. (1991) Fluorescence characteristics of peroxidation products in porcine intestinal brush-border membranes. Arch. Biochem. Biophys. 284, 375-380
- International Committee for Standardization in Haematology (1978) Recommendations for measurement of serum iron in human blood. Br. J. Haematol. 38, 291-294
- Graf, E., Mahoney, J.R., Bryant, R.G., and Eaton, J.W. (1984) Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J. Biol. Chem. 259, 3620-3624
- 23. Martin, R.B. (1986) The chemistry of aluminum as related to biology and medicine. *Clin. Chem.* 32, 1797-1806
- Blaustein, M.P. (1967) Phospholipids as ion exchangers: Implications for a possible role in biological membrane excitability and anesthesia. *Biochim. Biophys. Acta* 135, 653-668
- Ganrot, P.O. (1986) Metabolism and possible health effects of aluminum. *Environ. Health Perspect.* 65, 363-441
- Minotti, G. and Aust, S.D. (1987) The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J. Biol. Chem. 262, 1098-1104
- Aruoma, O.I., Halliwell, B., Laughton, M.J., Quinlan, G.J., and Gutteridge, J.M.C. (1989) The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron (III) complex. *Biochem. J.* 258, 617-620
- McLean, L.R. and Hagaman, K.A. (1992) Effect of lipid physical state on the rate of peroxidation of liposomes. *Free Radical Biol.* Med. 12, 113-119
- Lai, J.C., Guest, J.F., Leung, T.K., Lim, L., and Davison, A.N. (1980) The effects of cadmium, manganese and aluminum on sodium-potassium-activated and magnesium-activated adenosine triphosphatase activity and choline uptake in rat brain synaptosomes. *Biochem. Pharmacol.* 29, 141-146
- King, R.G., Sharp, J.A., and Boura, A.L. (1983) The effects of Al³⁺, Cd²⁺ and Mn²⁺ on human erythrocyte choline transport. Biochem. Pharmacol. 32, 3611-3617